There are 1 questions in this calculation: for each question, the 1 derivative of z is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({z}^{2})}{(2z - 1)}\ with\ respect\ to\ z:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{z^{2}}{(2z - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{z^{2}}{(2z - 1)}\right)}{dz}\\=&(\frac{-(2 + 0)}{(2z - 1)^{2}})z^{2} + \frac{2z}{(2z - 1)}\\=&\frac{-2z^{2}}{(2z - 1)^{2}} + \frac{2z}{(2z - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !