There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{sin(sin(sin(sin(sin(sin(\frac{sin(-1)x}{3}))))))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{sin(sin(sin(sin(sin(sin(\frac{1}{3}xsin(-1)))))))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{sin(sin(sin(sin(sin(sin(\frac{1}{3}xsin(-1)))))))}\right)}{dx}\\=&e^{sin(sin(sin(sin(sin(sin(\frac{1}{3}xsin(-1)))))))}cos(sin(sin(sin(sin(sin(\frac{1}{3}xsin(-1)))))))cos(sin(sin(sin(sin(\frac{1}{3}xsin(-1))))))cos(sin(sin(sin(\frac{1}{3}xsin(-1)))))cos(sin(sin(\frac{1}{3}xsin(-1))))cos(sin(\frac{1}{3}xsin(-1)))cos(\frac{1}{3}xsin(-1))(\frac{1}{3}sin(-1) + \frac{1}{3}xcos(-1)*0)\\=&\frac{e^{sin(sin(sin(sin(sin(sin(\frac{1}{3}xsin(-1)))))))}sin(-1)cos(sin(sin(sin(sin(sin(\frac{1}{3}xsin(-1)))))))cos(sin(\frac{1}{3}xsin(-1)))cos(sin(sin(sin(\frac{1}{3}xsin(-1)))))cos(\frac{1}{3}xsin(-1))cos(sin(sin(sin(sin(\frac{1}{3}xsin(-1))))))cos(sin(sin(\frac{1}{3}xsin(-1))))}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !