Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 10 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 10th\ derivative\ of\ function\ log_{x}^{y} + log_{y}^{z} + log_{z}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ \\ &\color{blue}{The\ 10th\ derivative\ of\ function:} \\=&\frac{362880log_{x}^{y}}{x^{10}ln(x)} + \frac{2053152log_{x}^{y}}{x^{10}ln^{2}(x)} + \frac{7036200log_{x}^{y}}{x^{10}ln^{3}(x)} + \frac{17368320log_{x}^{y}}{x^{10}ln^{4}(x)} + \frac{32319000log_{x}^{y}}{x^{10}ln^{5}(x)} + \frac{45556560log_{x}^{y}}{x^{10}ln^{6}(x)} + \frac{47628000log_{x}^{y}}{x^{10}ln^{7}(x)} + \frac{35078400log_{x}^{y}}{x^{10}ln^{8}(x)} + \frac{16329600log_{x}^{y}}{x^{10}ln^{9}(x)} + \frac{3628800log_{x}^{y}}{x^{10}ln^{10}(x)} - \frac{362880}{x^{10}ln(z)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return