There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{2}x + 2{x}^{2} - 3x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xe^{2} + 2x^{2} - 3x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{2} + 2x^{2} - 3x\right)}{dx}\\=&e^{2} + x*2e*0 + 2*2x - 3\\=&e^{2} + 4x - 3\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{2} + 4x - 3\right)}{dx}\\=&2e*0 + 4 + 0\\=&4\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !