Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{x{2}^{\frac{1}{2}}}{(xy + 16)}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2^{\frac{1}{2}}x}{(xy + 16)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2^{\frac{1}{2}}x}{(xy + 16)}\right)}{dy}\\=&2^{\frac{1}{2}}(\frac{-(x + 0)}{(xy + 16)^{2}})x + 0\\=&\frac{-2^{\frac{1}{2}}x^{2}}{(xy + 16)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return