There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 5{\frac{1}{(5y + 6)}}^{\frac{1}{2}}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{5}{(5y + 6)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{5}{(5y + 6)^{\frac{1}{2}}}\right)}{dy}\\=&5(\frac{\frac{-1}{2}(5 + 0)}{(5y + 6)^{\frac{3}{2}}})\\=&\frac{-25}{2(5y + 6)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !