There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{a}{(1 - x)}^{b}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{a}(-x + 1)^{b}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{a}(-x + 1)^{b}\right)}{dx}\\=&({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)}))(-x + 1)^{b} + {x}^{a}((-x + 1)^{b}((0)ln(-x + 1) + \frac{(b)(-1 + 0)}{(-x + 1)}))\\=&\frac{a{x}^{a}(-x + 1)^{b}}{x} - \frac{b(-x + 1)^{b}{x}^{a}}{(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !