There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(({x}^{2}) + 1)}^{(\frac{-1}{2})} - (\frac{1}{2})x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{2}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{2}x\right)}{dx}\\=&(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{3}{2}}}) - \frac{1}{2}\\=&\frac{-x}{(x^{2} + 1)^{\frac{3}{2}}} - \frac{1}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !