Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 9 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 9th\ derivative\ of\ function\ sqrt({x}^{2} - 16x + 8)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x^{2} - 16x + 8)\\\\ &\color{blue}{The\ 9th\ derivative\ of\ function:} \\=&\frac{2027025x^{9}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} - \frac{145945800x^{8}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} - \frac{4864860x^{7}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} + \frac{4670265600x^{7}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{272432160x^{6}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} - \frac{87178291200x^{6}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{3929310x^{5}}{(x^{2} - 16x + 8)^{\frac{13}{2}}} - \frac{6538371840x^{5}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} + \frac{1046139494400x^{5}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} - \frac{157172400x^{4}}{(x^{2} - 16x + 8)^{\frac{13}{2}}} + \frac{87178291200x^{4}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} - \frac{8369115955200x^{4}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} - \frac{1190700x^{3}}{(x^{2} - 16x + 8)^{\frac{11}{2}}} + \frac{2514758400x^{3}}{(x^{2} - 16x + 8)^{\frac{13}{2}}} - \frac{697426329600x^{3}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} + \frac{44635285094400x^{3}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{28576800x^{2}}{(x^{2} - 16x + 8)^{\frac{11}{2}}} - \frac{20118067200x^{2}}{(x^{2} - 16x + 8)^{\frac{13}{2}}} + \frac{3347646382080x^{2}}{(x^{2} - 16x + 8)^{\frac{15}{2}}} - \frac{153035263180800x^{2}}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{99225x}{(x^{2} - 16x + 8)^{\frac{9}{2}}} - \frac{228614400x}{(x^{2} - 16x + 8)^{\frac{11}{2}}} + \frac{80472268800x}{(x^{2} - 16x + 8)^{\frac{13}{2}}} - \frac{8927057018880x}{(x^{2} - 16x + 8)^{\frac{15}{2}}} + \frac{306070526361600x}{(x^{2} - 16x + 8)^{\frac{17}{2}}} + \frac{609638400}{(x^{2} - 16x + 8)^{\frac{11}{2}}} - \frac{128755630080}{(x^{2} - 16x + 8)^{\frac{13}{2}}} - \frac{793800}{(x^{2} - 16x + 8)^{\frac{9}{2}}} + \frac{10202350878720}{(x^{2} - 16x + 8)^{\frac{15}{2}}} - \frac{272062690099200}{(x^{2} - 16x + 8)^{\frac{17}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return