There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(2{x}^{2} - 18)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 8x^{6} - 216x^{4} + 1944x^{2} - 5832\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 8x^{6} - 216x^{4} + 1944x^{2} - 5832\right)}{dx}\\=&8*6x^{5} - 216*4x^{3} + 1944*2x + 0\\=&48x^{5} - 864x^{3} + 3888x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !