There are 1 questions in this calculation: for each question, the 2 derivative of z is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{y}{(3{z}^{2} + 2{y}^{2})}\ with\ respect\ to\ z:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{y}{(3z^{2} + 2y^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{y}{(3z^{2} + 2y^{2})}\right)}{dz}\\=&(\frac{-(3*2z + 0)}{(3z^{2} + 2y^{2})^{2}})y + 0\\=&\frac{-6yz}{(3z^{2} + 2y^{2})^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6yz}{(3z^{2} + 2y^{2})^{2}}\right)}{dz}\\=&-6(\frac{-2(3*2z + 0)}{(3z^{2} + 2y^{2})^{3}})yz - \frac{6y}{(3z^{2} + 2y^{2})^{2}}\\=&\frac{72yz^{2}}{(3z^{2} + 2y^{2})^{3}} - \frac{6y}{(3z^{2} + 2y^{2})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !