Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x{y}^{2} + y)}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (y^{2}x + y)^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (y^{2}x + y)^{x}\right)}{dx}\\=&((y^{2}x + y)^{x}((1)ln(y^{2}x + y) + \frac{(x)(y^{2} + 0)}{(y^{2}x + y)}))\\=&(y^{2}x + y)^{x}ln(y^{2}x + y) + \frac{y^{2}x(y^{2}x + y)^{x}}{(y^{2}x + y)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return