There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{x}{y})}^{z}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{x}{y})^{z}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{x}{y})^{z}\right)}{dy}\\=&((\frac{x}{y})^{z}((0)ln(\frac{x}{y}) + \frac{(z)(\frac{x*-1}{y^{2}})}{(\frac{x}{y})}))\\=&\frac{-z(\frac{x}{y})^{z}}{y}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !