There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(x - 1)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4} - 4x^{3} + 6x^{2} - 4x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4} - 4x^{3} + 6x^{2} - 4x + 1\right)}{dx}\\=&4x^{3} - 4*3x^{2} + 6*2x - 4 + 0\\=&4x^{3} - 12x^{2} + 12x - 4\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3} - 12x^{2} + 12x - 4\right)}{dx}\\=&4*3x^{2} - 12*2x + 12 + 0\\=&12x^{2} - 24x + 12\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !