Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 3.00151 - \frac{54.85817}{(1 + {(\frac{x}{143.04402})}^{0.80565})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{54.85817}{(0.00699085498296259x + 1)} + 3.00151\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{54.85817}{(0.00699085498296259x + 1)} + 3.00151\right)}{dx}\\=& - 54.85817(\frac{-(0.00699085498296259 + 0)}{(0.00699085498296259x + 1)^{2}}) + 0\\=& - \frac{-0.3835055111007}{(0.00699085498296259x + 1)(0.00699085498296259x + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return