There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{4}{(2 + x)})}^{2}x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{16x}{(x + 2)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{16x}{(x + 2)^{2}}\right)}{dx}\\=&16(\frac{-2(1 + 0)}{(x + 2)^{3}})x + \frac{16}{(x + 2)^{2}}\\=&\frac{-32x}{(x + 2)^{3}} + \frac{16}{(x + 2)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !