There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({e}^{x})sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x}sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x}sin(x)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x) + {e}^{x}cos(x)\\=&{e}^{x}sin(x) + {e}^{x}cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e}^{x}sin(x) + {e}^{x}cos(x)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x) + {e}^{x}cos(x) + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos(x) + {e}^{x}*-sin(x)\\=&2{e}^{x}cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !