There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{5} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} + 1\right)}{dx}\\=&5x^{4} + 0\\=&5x^{4}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5x^{4}\right)}{dx}\\=&5*4x^{3}\\=&20x^{3}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 20x^{3}\right)}{dx}\\=&20*3x^{2}\\=&60x^{2}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 60x^{2}\right)}{dx}\\=&60*2x\\=&120x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !