Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(x - {2}^{(\frac{2}{1})})}{(x + {2}^{(\frac{2}{1})})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x}{(x + 4)} - \frac{4}{(x + 4)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x}{(x + 4)} - \frac{4}{(x + 4)})\right)}{dx}\\=&\frac{((\frac{-(1 + 0)}{(x + 4)^{2}})x + \frac{1}{(x + 4)} - 4(\frac{-(1 + 0)}{(x + 4)^{2}}))}{(\frac{x}{(x + 4)} - \frac{4}{(x + 4)})}\\=&\frac{-x}{(x + 4)^{2}(\frac{x}{(x + 4)} - \frac{4}{(x + 4)})} + \frac{4}{(x + 4)^{2}(\frac{x}{(x + 4)} - \frac{4}{(x + 4)})} + \frac{1}{(\frac{x}{(x + 4)} - \frac{4}{(x + 4)})(x + 4)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return