Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of m is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2{(m + 1)}^{2})(4m + 2)}{(4m + 1)}\ with\ respect\ to\ m:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{8m^{3}}{(4m + 1)} + \frac{20m^{2}}{(4m + 1)} + \frac{16m}{(4m + 1)} + \frac{4}{(4m + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{8m^{3}}{(4m + 1)} + \frac{20m^{2}}{(4m + 1)} + \frac{16m}{(4m + 1)} + \frac{4}{(4m + 1)}\right)}{dm}\\=&8(\frac{-(4 + 0)}{(4m + 1)^{2}})m^{3} + \frac{8*3m^{2}}{(4m + 1)} + 20(\frac{-(4 + 0)}{(4m + 1)^{2}})m^{2} + \frac{20*2m}{(4m + 1)} + 16(\frac{-(4 + 0)}{(4m + 1)^{2}})m + \frac{16}{(4m + 1)} + 4(\frac{-(4 + 0)}{(4m + 1)^{2}})\\=&\frac{-32m^{3}}{(4m + 1)^{2}} + \frac{24m^{2}}{(4m + 1)} - \frac{80m^{2}}{(4m + 1)^{2}} + \frac{40m}{(4m + 1)} - \frac{64m}{(4m + 1)^{2}} - \frac{16}{(4m + 1)^{2}} + \frac{16}{(4m + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return