Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ((\frac{x}{(x + 1)} - ln(x + 1)){\frac{1}{x}}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(x + 1)x} - \frac{ln(x + 1)}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(x + 1)x} - \frac{ln(x + 1)}{x^{2}}\right)}{dx}\\=&\frac{(\frac{-(1 + 0)}{(x + 1)^{2}})}{x} + \frac{-1}{(x + 1)x^{2}} - \frac{-2ln(x + 1)}{x^{3}} - \frac{(1 + 0)}{x^{2}(x + 1)}\\=&\frac{-1}{(x + 1)^{2}x} - \frac{2}{(x + 1)x^{2}} + \frac{2ln(x + 1)}{x^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return