Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({(1 - \frac{xJ}{2})}^{2} + 0.005)}^{(\frac{M}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)^{(0.5M)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)^{(0.5M)}\right)}{dx}\\=&((0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)^{(0.5M)}((0)ln(0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005) + \frac{(0.5M)(0.25J^{2}*2x - 0.5J - 0.5J + 0)}{(0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)}))\\=&\frac{0.25J^{2}Mx(0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)^{(0.5M)}}{(0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)} - \frac{0.25JM(0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)^{(0.5M)}}{(0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)} - \frac{0.25JM(0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)^{(0.5M)}}{(0.25J^{2}x^{2} - 0.5Jx - 0.5Jx + 1.005)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return