There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{(f - ax)} + \frac{1}{(y - b(1 - x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(f - ax)} + \frac{1}{(y + bx - b)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(f - ax)} + \frac{1}{(y + bx - b)}\right)}{dx}\\=&(\frac{-(0 - a)}{(f - ax)^{2}}) + (\frac{-(0 + b + 0)}{(y + bx - b)^{2}})\\=&\frac{a}{(f - ax)^{2}} - \frac{b}{(y + bx - b)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !