There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(18 - x)}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (-x + 18)^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (-x + 18)^{x}\right)}{dx}\\=&((-x + 18)^{x}((1)ln(-x + 18) + \frac{(x)(-1 + 0)}{(-x + 18)}))\\=&(-x + 18)^{x}ln(-x + 18) - \frac{x(-x + 18)^{x}}{(-x + 18)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !