There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({e}^{x} + 1)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{x}}{x} + \frac{1}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{x}}{x} + \frac{1}{x}\right)}{dx}\\=&\frac{-{e}^{x}}{x^{2}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x} + \frac{-1}{x^{2}}\\=&\frac{-{e}^{x}}{x^{2}} + \frac{{e}^{x}}{x} - \frac{1}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !