Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{cd}{(f - cdxl)} - (l - xl)h - \frac{cd}{(f - cd(1 - x)l)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{cd}{(f - cdlx)} + lhx - lh - \frac{cd}{(f + cdlx - cdl)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{cd}{(f - cdlx)} + lhx - lh - \frac{cd}{(f + cdlx - cdl)}\right)}{dx}\\=&(\frac{-(0 - cdl)}{(f - cdlx)^{2}})cd + 0 + lh + 0 - (\frac{-(0 + cdl + 0)}{(f + cdlx - cdl)^{2}})cd + 0\\=&\frac{c^{2}d^{2}l}{(f - cdlx)^{2}} + lh + \frac{c^{2}d^{2}l}{(f + cdlx - cdl)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return