There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(1 - x) - ln(1 + x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(-x + 1) - ln(x + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(-x + 1) - ln(x + 1)\right)}{dx}\\=&\frac{(-1 + 0)}{(-x + 1)} - \frac{(1 + 0)}{(x + 1)}\\=&\frac{-1}{(-x + 1)} - \frac{1}{(x + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{(-x + 1)} - \frac{1}{(x + 1)}\right)}{dx}\\=&-(\frac{-(-1 + 0)}{(-x + 1)^{2}}) - (\frac{-(1 + 0)}{(x + 1)^{2}})\\=&\frac{-1}{(-x + 1)^{2}} + \frac{1}{(x + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !