There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(\frac{(x + 2)}{(1 - x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})\right)}{dx}\\=&\frac{((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + 2(\frac{-(-1 + 0)}{(-x + 1)^{2}}))}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})}\\=&\frac{x}{(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} + \frac{2}{(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} + \frac{1}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})(-x + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x}{(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} + \frac{2}{(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} + \frac{1}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})(-x + 1)}\right)}{dx}\\=&\frac{(\frac{-2(-1 + 0)}{(-x + 1)^{3}})x}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} + \frac{(\frac{-((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + 2(\frac{-(-1 + 0)}{(-x + 1)^{2}}))}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}})x}{(-x + 1)^{2}} + \frac{1}{(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} + \frac{2(\frac{-2(-1 + 0)}{(-x + 1)^{3}})}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} + \frac{2(\frac{-((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + 2(\frac{-(-1 + 0)}{(-x + 1)^{2}}))}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}})}{(-x + 1)^{2}} + \frac{(\frac{-((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + 2(\frac{-(-1 + 0)}{(-x + 1)^{2}}))}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}})}{(-x + 1)} + \frac{(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})}\\=&\frac{2x}{(-x + 1)^{3}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} - \frac{x^{2}}{(-x + 1)^{4}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}} - \frac{x}{(-x + 1)^{3}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}} - \frac{4x}{(-x + 1)^{4}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}} - \frac{x}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}(-x + 1)^{3}} + \frac{2}{(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} - \frac{4}{(-x + 1)^{4}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}} + \frac{4}{(-x + 1)^{3}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})} - \frac{2}{(-x + 1)^{3}(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}} - \frac{2}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}(-x + 1)^{3}} - \frac{1}{(\frac{x}{(-x + 1)} + \frac{2}{(-x + 1)})^{2}(-x + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !