There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(5 - {x}^{2})}{(5 + {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x^{2}}{(x^{2} + 5)} + \frac{5}{(x^{2} + 5)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x^{2}}{(x^{2} + 5)} + \frac{5}{(x^{2} + 5)}\right)}{dx}\\=& - (\frac{-(2x + 0)}{(x^{2} + 5)^{2}})x^{2} - \frac{2x}{(x^{2} + 5)} + 5(\frac{-(2x + 0)}{(x^{2} + 5)^{2}})\\=&\frac{2x^{3}}{(x^{2} + 5)^{2}} - \frac{2x}{(x^{2} + 5)} - \frac{10x}{(x^{2} + 5)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !