There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2400}{(1.52 - lg(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2400}{(-lg(x) + 1.52)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2400}{(-lg(x) + 1.52)}\right)}{dx}\\=&2400(\frac{-(\frac{-1}{ln{10}(x)} + 0)}{(-lg(x) + 1.52)^{2}})\\=&\frac{2400}{(-lg(x) + 1.52)(-lg(x) + 1.52)xln{10}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !