There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xsqrt(1 - {x}^{2}) + arcsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsqrt(-x^{2} + 1) + arcsin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsqrt(-x^{2} + 1) + arcsin(x)\right)}{dx}\\=&sqrt(-x^{2} + 1) + \frac{x(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}} + (\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&sqrt(-x^{2} + 1) - \frac{x^{2}}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !