There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin({x}^{sin({x}^{x})})sin({x}^{sqrt({x}^{x})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin({x}^{sin({x}^{x})})sin({x}^{sqrt({x}^{x})})\right)}{dx}\\=&cos({x}^{sin({x}^{x})})({x}^{sin({x}^{x})}((cos({x}^{x})({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(x) + \frac{(sin({x}^{x}))(1)}{(x)}))sin({x}^{sqrt({x}^{x})}) + sin({x}^{sin({x}^{x})})cos({x}^{sqrt({x}^{x})})({x}^{sqrt({x}^{x})}((\frac{({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))*\frac{1}{2}}{({x}^{x})^{\frac{1}{2}}})ln(x) + \frac{(sqrt({x}^{x}))(1)}{(x)}))\\=&{x}^{x}{x}^{sin({x}^{x})}ln^{2}(x)sin({x}^{sqrt({x}^{x})})cos({x}^{x})cos({x}^{sin({x}^{x})}) + {x}^{x}{x}^{sin({x}^{x})}ln(x)sin({x}^{sqrt({x}^{x})})cos({x}^{x})cos({x}^{sin({x}^{x})}) + \frac{{x}^{sin({x}^{x})}sin({x}^{x})sin({x}^{sqrt({x}^{x})})cos({x}^{sin({x}^{x})})}{x} + \frac{{x}^{(\frac{1}{2}x)}{x}^{sqrt({x}^{x})}ln^{2}(x)sin({x}^{sin({x}^{x})})cos({x}^{sqrt({x}^{x})})}{2} + \frac{{x}^{(\frac{1}{2}x)}{x}^{sqrt({x}^{x})}ln(x)sin({x}^{sin({x}^{x})})cos({x}^{sqrt({x}^{x})})}{2} + \frac{{x}^{sqrt({x}^{x})}sin({x}^{sin({x}^{x})})cos({x}^{sqrt({x}^{x})})sqrt({x}^{x})}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !