Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e^{x}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e^{x}}^{x}\right)}{dx}\\=&({e^{x}}^{x}((1)ln(e^{x}) + \frac{(x)(e^{x})}{(e^{x})}))\\=&{e^{x}}^{x}ln(e^{x}) + x{e^{x}}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e^{x}}^{x}ln(e^{x}) + x{e^{x}}^{x}\right)}{dx}\\=&({e^{x}}^{x}((1)ln(e^{x}) + \frac{(x)(e^{x})}{(e^{x})}))ln(e^{x}) + \frac{{e^{x}}^{x}e^{x}}{(e^{x})} + {e^{x}}^{x} + x({e^{x}}^{x}((1)ln(e^{x}) + \frac{(x)(e^{x})}{(e^{x})}))\\=&{e^{x}}^{x}ln^{2}(e^{x}) + 2x{e^{x}}^{x}ln(e^{x}) + 2{e^{x}}^{x} + x^{2}{e^{x}}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return