There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ X - (1 + (\frac{1}{X}))ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{ln(x)}{X} - ln(x) + X\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{ln(x)}{X} - ln(x) + X\right)}{dx}\\=& - \frac{1}{X(x)} - \frac{1}{(x)} + 0\\=& - \frac{1}{Xx} - \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !