There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{z{(z - 1)}^{2}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{z^{3}}{x} - \frac{2z^{2}}{x} + \frac{z}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{z^{3}}{x} - \frac{2z^{2}}{x} + \frac{z}{x}\right)}{dx}\\=&\frac{z^{3}*-1}{x^{2}} - \frac{2z^{2}*-1}{x^{2}} + \frac{z*-1}{x^{2}}\\=&\frac{-z^{3}}{x^{2}} + \frac{2z^{2}}{x^{2}} - \frac{z}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !