There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{(x - 1)}}{x} - ax + (\frac{a}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{(x - 1)}}{x} - ax + \frac{a}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(x - 1)}}{x} - ax + \frac{a}{x}\right)}{dx}\\=&\frac{-{e}^{(x - 1)}}{x^{2}} + \frac{({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))}{x} - a + \frac{a*-1}{x^{2}}\\=&\frac{-{e}^{(x - 1)}}{x^{2}} + \frac{{e}^{(x - 1)}}{x} - \frac{a}{x^{2}} - a\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !