There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 4{x}^{4} + 3{x}^{2}{y}^{3} - 2{x}^{2}{y}^{4} + xy + 5\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{4} + 3y^{3}x^{2} - 2y^{4}x^{2} + yx + 5\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{4} + 3y^{3}x^{2} - 2y^{4}x^{2} + yx + 5\right)}{dx}\\=&4*4x^{3} + 3y^{3}*2x - 2y^{4}*2x + y + 0\\=&16x^{3} + 6y^{3}x - 4y^{4}x + y\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 16x^{3} + 6y^{3}x - 4y^{4}x + y\right)}{dx}\\=&16*3x^{2} + 6y^{3} - 4y^{4} + 0\\=&48x^{2} + 6y^{3} - 4y^{4}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 48x^{2} + 6y^{3} - 4y^{4}\right)}{dx}\\=&48*2x + 0 + 0\\=&96x\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 96x\right)}{dx}\\=&96\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !