There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(3)cos(x) - sqrt(1 - 3{(sin(x))}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos(x)sqrt(3) - sqrt(-3sin^{2}(x) + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(x)sqrt(3) - sqrt(-3sin^{2}(x) + 1)\right)}{dx}\\=&-sin(x)sqrt(3) + cos(x)*0*\frac{1}{2}*3^{\frac{1}{2}} - \frac{(-3*2sin(x)cos(x) + 0)*\frac{1}{2}}{(-3sin^{2}(x) + 1)^{\frac{1}{2}}}\\=&-sin(x)sqrt(3) + \frac{3sin(x)cos(x)}{(-3sin^{2}(x) + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !