There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{3}{2} - a)}^{a}{e}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{3}{2} - a)^{a}{e}^{x}\right)}{dx}\\=&((\frac{3}{2} - a)^{a}((0)ln(\frac{3}{2} - a) + \frac{(a)(0 + 0)}{(\frac{3}{2} - a)})){e}^{x} + (\frac{3}{2} - a)^{a}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&{e}^{x}(-a + \frac{3}{2})^{a}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !