There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(xx - x - 5)}^{\frac{1}{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} - x - 5)^{\frac{1}{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} - x - 5)^{\frac{1}{3}}\right)}{dx}\\=&(\frac{\frac{1}{3}(2x - 1 + 0)}{(x^{2} - x - 5)^{\frac{2}{3}}})\\=&\frac{2x}{3(x^{2} - x - 5)^{\frac{2}{3}}} - \frac{1}{3(x^{2} - x - 5)^{\frac{2}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !