There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(t + {(({t}^{2}) + 1)}^{\frac{1}{2}})\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(t + (t^{2} + 1)^{\frac{1}{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(t + (t^{2} + 1)^{\frac{1}{2}})\right)}{dt}\\=&\frac{(1 + (\frac{\frac{1}{2}(2t + 0)}{(t^{2} + 1)^{\frac{1}{2}}}))}{(t + (t^{2} + 1)^{\frac{1}{2}})}\\=&\frac{t}{(t + (t^{2} + 1)^{\frac{1}{2}})(t^{2} + 1)^{\frac{1}{2}}} + \frac{1}{(t + (t^{2} + 1)^{\frac{1}{2}})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !