There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(ln(x) + 1)}{(ex)}) - (\frac{(1 - ln(x))x}{e})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{xe} + \frac{xln(x)}{e} + \frac{1}{xe} - \frac{x}{e}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{xe} + \frac{xln(x)}{e} + \frac{1}{xe} - \frac{x}{e}\right)}{dx}\\=&\frac{-ln(x)}{x^{2}e} + \frac{-0ln(x)}{xe^{2}} + \frac{1}{xe(x)} + \frac{ln(x)}{e} + \frac{x*-0ln(x)}{e^{2}} + \frac{x}{e(x)} + \frac{-1}{x^{2}e} + \frac{-0}{xe^{2}} - \frac{1}{e} - \frac{x*-0}{e^{2}}\\=&\frac{-ln(x)}{x^{2}e} + \frac{ln(x)}{e}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !