There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(e^{x} - 1)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{{x}*{3}} - 3e^{{x}*{2}} + 3e^{x} - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{{x}*{3}} - 3e^{{x}*{2}} + 3e^{x} - 1\right)}{dx}\\=&3e^{{x}*{2}}e^{x} - 3*2e^{x}e^{x} + 3e^{x} + 0\\=&3e^{{x}*{3}} - 6e^{{x}*{2}} + 3e^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !