Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x{e}^{x}(arccos(2)x + bsin(2)x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e}^{x}arccos(2) + bx^{2}{e}^{x}sin(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{e}^{x}arccos(2) + bx^{2}{e}^{x}sin(2)\right)}{dx}\\=&2x{e}^{x}arccos(2) + x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))arccos(2) + x^{2}{e}^{x}(\frac{-(0)}{((1 - (2)^{2})^{\frac{1}{2}})}) + b*2x{e}^{x}sin(2) + bx^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2) + bx^{2}{e}^{x}cos(2)*0\\=&2x{e}^{x}arccos(2) + x^{2}{e}^{x}arccos(2) + 2bx{e}^{x}sin(2) + bx^{2}{e}^{x}sin(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return