Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{x}{e}^{x} + 2{x}^{45}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{x}{e}^{x} + 2x^{45}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{x}{e}^{x} + 2x^{45}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){e}^{x} + {x}^{x}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 2*45x^{44}\\=&{x}^{x}{e}^{x}ln(x) + {x}^{x}{e}^{x} + {e}^{x}{x}^{x} + 90x^{44}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return