There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2 + \frac{{e}^{\frac{1}{x}}}{1} + {e}^{(\frac{2}{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{\frac{1}{x}} + {e}^{(\frac{2}{x})} + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{\frac{1}{x}} + {e}^{(\frac{2}{x})} + 2\right)}{dx}\\=&({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) + ({e}^{(\frac{2}{x})}((\frac{2*-1}{x^{2}})ln(e) + \frac{(\frac{2}{x})(0)}{(e)})) + 0\\=&\frac{-{e}^{\frac{1}{x}}}{x^{2}} - \frac{2{e}^{(\frac{2}{x})}}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !