There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(x + \frac{1}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x + \frac{1}{x})\right)}{dx}\\=&\frac{(1 + \frac{-1}{x^{2}})}{(x + \frac{1}{x})}\\=& - \frac{1}{(x + \frac{1}{x})x^{2}} + \frac{1}{(x + \frac{1}{x})}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{1}{(x + \frac{1}{x})x^{2}} + \frac{1}{(x + \frac{1}{x})}\right)}{dx}\\=& - \frac{(\frac{-(1 + \frac{-1}{x^{2}})}{(x + \frac{1}{x})^{2}})}{x^{2}} - \frac{-2}{(x + \frac{1}{x})x^{3}} + (\frac{-(1 + \frac{-1}{x^{2}})}{(x + \frac{1}{x})^{2}})\\=& - \frac{1}{(x + \frac{1}{x})^{2}x^{4}} + \frac{2}{(x + \frac{1}{x})^{2}x^{2}} + \frac{2}{(x + \frac{1}{x})x^{3}} - \frac{1}{(x + \frac{1}{x})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !