There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 4{({x}^{3} - x)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{12} - 16x^{10} + 24x^{8} - 16x^{6} + 4x^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{12} - 16x^{10} + 24x^{8} - 16x^{6} + 4x^{4}\right)}{dx}\\=&4*12x^{11} - 16*10x^{9} + 24*8x^{7} - 16*6x^{5} + 4*4x^{3}\\=&48x^{11} - 160x^{9} + 192x^{7} - 96x^{5} + 16x^{3}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 48x^{11} - 160x^{9} + 192x^{7} - 96x^{5} + 16x^{3}\right)}{dx}\\=&48*11x^{10} - 160*9x^{8} + 192*7x^{6} - 96*5x^{4} + 16*3x^{2}\\=&528x^{10} - 1440x^{8} + 1344x^{6} - 480x^{4} + 48x^{2}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 528x^{10} - 1440x^{8} + 1344x^{6} - 480x^{4} + 48x^{2}\right)}{dx}\\=&528*10x^{9} - 1440*8x^{7} + 1344*6x^{5} - 480*4x^{3} + 48*2x\\=&5280x^{9} - 11520x^{7} + 8064x^{5} - 1920x^{3} + 96x\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 5280x^{9} - 11520x^{7} + 8064x^{5} - 1920x^{3} + 96x\right)}{dx}\\=&5280*9x^{8} - 11520*7x^{6} + 8064*5x^{4} - 1920*3x^{2} + 96\\=&47520x^{8} - 80640x^{6} + 40320x^{4} - 5760x^{2} + 96\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !