There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4a{x}^{(2a - 1)}{x}^{-1}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4a{x}^{(2a - 1)}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4a{x}^{(2a - 1)}}{x}\right)}{dx}\\=&\frac{4a*-{x}^{(2a - 1)}}{x^{2}} + \frac{4a({x}^{(2a - 1)}((0 + 0)ln(x) + \frac{(2a - 1)(1)}{(x)}))}{x}\\=&\frac{-8a{x}^{(2a - 1)}}{x^{2}} + \frac{8a^{2}{x}^{(2a - 1)}}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !