There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x - 4){(x + 1)}^{2}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}x^{3} - \frac{2}{3}x^{2} - \frac{7}{3}x - \frac{4}{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}x^{3} - \frac{2}{3}x^{2} - \frac{7}{3}x - \frac{4}{3}\right)}{dx}\\=&\frac{1}{3}*3x^{2} - \frac{2}{3}*2x - \frac{7}{3} + 0\\=&x^{2} - \frac{4x}{3} - \frac{7}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !